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Abstract

The distributed-Lagrange-multiplier/fictitious-domain (DLM/FD) method of Glowinski et al. [R. Glowinski, T.-W.
Pan, T.I. Hesla, D.D. Joseph, A distributed Lagrange multiplier/fictitious domain method for particulate flows, Int. J.
Multiphase Flow 25 (1999) 755–794] is extended to deal with heat transfer in particulate flows in two dimensions. The
Boussinesq approximation is employed for the coupling between the flow and temperature fields. The fluid-flow equa-
tions are solved with the finite-difference projection method on a half-staggered grid. In our operator splitting scheme,
the Lagrange multipliers at the previous time level are kept in the fluid equations, and the new Lagrange multipliers
for the rigid-body motion constraint and the Dirichlet temperature boundary condition are determined from the
reduced saddle-point problem, whereas a very simple scheme based on the fully explicit computation of the Lagrange
multiplier is proposed for the problem in which the solid heat conduction inside the particle boundary is also consid-
ered. Our code for the case of fixed temperature on the immersed boundary is verified by comparing favorably our
results on the natural convection driven by a hot cylinder eccentrically placed in a square box and on the sedimen-
tation of a cold circular particle in a vertical channel to the data in the literature. The code for the case of freely
varying temperature on the boundaries of freely moving particles is applied to analyze the motion of a catalyst particle
in a box and in particular the heat conductivities of nanofluids and sheared non-colloidal suspensions, respectively.
Our preliminary computational results support the argument that the micro-heat-convection in the fluids is primarily
responsible for the unusually high heat conductivity of nanofluids. It is shown that the Peclet number plays a negative
role in the diffusion-related heat conductivity of a sheared non-colloidal suspension, whereas the Reynolds number
does the opposite.
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1. Introduction

Particulate flows are widespread in nature and industrial applications. With the rapid development of
computer power, the direct numerical simulation (DNS), based on the Navier–Stokes equations or the discrete
lattice-Boltzmann equation for the solution of the fluid-flow problem, has become a practical and important
tool to probe the mechanics in particulate flows. Over the past decade a variety of DNS methods have
been proposed. They can be classified into two families: boundary-fitted methods and non-boundary-fitted
methods, according to whether or not the boundary-fitted mesh is used for the solution of the flow field.
For the boundary-fitted methods such as the arbitrary Lagrangian–Eulerian (ALE) finite-element method
(FEM) [1], the fluid flow is computed on a boundary-fitted mesh and remeshing is normally required as the
interfaces move, whereas for the non-boundary-fitted methods such as the lattice Boltzmann method
(LBM) [2], the immersed boundary (IB) method [3], the distributed Lagrange multiplier based fictitious
domain method (DLM/FD) [4], the accelerated Stokesian dynamics (ASD) [5] and the force coupling method
(FCM) [6,7], the fluid flow is computed on a stationary grid constructed in the entire domain comprising both
the exterior and interior of the particles. The non-boundary-fitted methods are, generally speaking, simpler
and more efficient than the boundary-fitted methods, in particular for the simulation of concentrated
suspensions.

The fictitious domain (FD) method was initially developed to solve partial differential equations in a com-
plex geometry, as pointed by Glowinski et al. [4]. Glowinski et al. [8–11] described the FD methods for the
Dirichlet problem in which the boundary condition is enforced with the Lagrange multiplier method, and they
employed the methods to solve some differential equations and the incompressible viscous unsteady flows in
complex or moving geometries. The Lagrange multiplier based FD method was also used by Bertrand et al.
[12] and Tanguy et al. [13] to calculate the three-dimensional Stokes flows of Newtonian and viscoplastic fluids
in a mixer. Glowinski et al. [4] developed the distributed Lagrange multiplier based FD method (DLM/FD) to
simulate particulate flows where the rigid particles move freely. The key idea in this method is that the interior
domains of the particles are filled with the same fluids as the surroundings and the Lagrange multiplier (phys-
ically a pseudo body force) is introduced to enforce the interior (fictitious) fluids to satisfy the constraint of
rigid body motion. The method has been successfully applied to the simulation of particulate flows [14–16].
Compared to the lattice Boltzmann method, the DLM/FD method has an advantage of flexibility in the sense
that it can be easily extended to any phenomenological equations, whereas the extension of the lattice Boltz-
mann method to a complex fluid needs invoking the statistical physics, and indeed the application of the
DLM/FD method to the simulation of particulate suspensions of viscoelastic fluids appears more successful
[15,17]. The present work is also an example demonstrating the flexibility of the DLM/FD method. The
DLM/FD method and the immersed boundary (IB) method proposed by Höfler and Schwarzer [3] that is built
on the original IB method of Peskin for fluid/flexible-body interactions [18] have much in common: both intro-
duce a pseudo body force that is associated with the rigid-body motion of the fictitious fluids inside the particle
boundaries, and the hydrodynamic forces on the particles can be computed with the pseudo body force. In
fact, the two methods can be viewed as the different numerical implementations of a general DLM/FD for-
mulation [19] for fluid/solid systems. The main difference is that for the former the Lagrange multiplier
(i.e., the pseudo body force) is normally determined implicitly from the kinematic constraint of the solid veloc-
ity being equal to the fluid velocity (the rigid-body motion constraint in case of rigid particles), whereas for the
latter the solid velocity is explicitly set to the same as the most recently calculated fluid velocity and the pseudo
body force is subsequently evaluated based on the motion of the solid (a sufficiently large elastic spring con-
stant or elastic modulus in case of rigid particles). Due to implicit calculation of the pseudo body force, the
DLM/FD method is computationally more expensive but presumably more robust than the IB method. Nev-
ertheless, the line between the DLM/FD and IB methods is not distinct due to the fact that one may easily
replace the implicit scheme with the explicit scheme for the Lagrange multiplier in the DLM/FD method, such
as the one proposed by Shi and Phan-Thien [20] for fluid–structure interactions and the simple scheme to be
presented later in the present study for the solution of the combined fluid/solid temperature equation. One
drawback of the DLM/FD method for the particulate flows is that the formulation requires a discontinuous
velocity gradient across the particle boundary, which cannot be well treated with the non-boundary-fitted
mesh. This drawback, however, is alleviated by the fact that the hydrodynamic force on the particles is of most
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interest for the particulate suspensions and can be obtained with reasonable accuracy since the hydrodynamic
force is determined from integration of the pseudo body force over the solid body and is not sensitive to the
quality of the local solution around the boundary, which is not surprising since the local solution in the solid
domain obtained from the DLM/FD method, though not very smooth, well satisfies the rigidity constraint in
a weak form and consequently well conserves the momentum of the combined fluid/solid system.

For the Dirichlet problem, the body-force-base FD and IB methods are characterized by a direct introduc-
tion of the pseudo body force adjusting the velocities on the nodes in the vicinity of the boundary and render-
ing them to satisfy the boundary condition via interpolation to the boundary. In contrast, some IB methods
[21] do not invoke the pseudo body force directly, and the no-slip condition on the solid boundary is fulfilled
via the interpolation (or extrapolation) of the velocity on the boundary to the fluid nodes nearby (one may still
get a momentum forcing for these nodes as a result of the interpolation, but such methods are clearly different
from the direct pseudo-body-force-based methods); the equations for the fictitious fluid nodes inside the solid
boundary may be retained [22] or discarded (known as ghost-cell IB methods [21]). These non-body-force-
based (or direct-interpolation-based) IB methods have been proved very successful for the cases where the
motion of the boundary is prescribed in advance [21], but it remains to see whether they can perform better
than the aforementioned body-force-based FD or IB methods for the particulate flows. There exist a variety of
different implementations of the body-force-based non-boundary-fitted methods for the particulate flows in
the literature (e.g. [4,3,16,17,24–28]). It should be noted that in above discussions we do not distinguish
between the pseudo body force and the general momentum forcing since any forcing term in the momentum
equation can be made equivalent to a pseudo body force; the Lagrange multiplier is introduced exactly in a
form of body force when the L2 inner product is used for the Lagrange multiplier term in the weak DLM/
FD formulation [4], but can be in other forms according to other definitions of the inner product [4], and even
in a form of stress in the formulation of Patankar et al. [23].

Recently, the DLM/FD method has been extended by Baaijens [29] and Yu [19] to handle the fluid/elastic–
structure interactions. The aim of the present study is to extend the DLM/FD method to particulate flows
where the heat transfer between the particles and fluids needs to be accounted for. The work was motivated
by the fact that in many industrial applications the motion of the particles and the heat transfer are strongly
coupled. For example, in the fluidized-bed reactor, highly active catalysts are used because they can make the
processes for the polymerization of olefins using ‘‘low pressure processes’’ very attractive, however, there is a
danger that the catalysts might melt if the heat produced from the chemical reaction cannot be rapidly
removed from the catalysts [30]. The interactions between catalyst particles were observed to affect the heat
removal significantly [30], therefore, full resolution of the motion of catalysts and the heat transfer is definitely
desirable. Another example is ‘‘nanofluids’’, a colloidal suspension of nanoparticles or nanofibers with sizes
typically of 1–100 nm. Nanofluids have attracted great interest recently because of reports of greatly enhanced
thermal properties. For example, a small amount (<1% volume fraction) of Cu nanoparticles dispersed in eth-
ylene glycol was reported to increase the heat conductivity of the liquid by 40% [31]. The traditional effective
medium theory for the composite materials such as the Maxwell–Garnett (MG) model [32] fails to explain
such a significant enhancement in the heat conductivity, and a variety of ideas have been proposed to elucidate
this anomalous phenomenon [31]. Recently, Prasher et al. [33] has excluded some possible mechanisms
through an order-of-magnitude analysis and showed that convection caused by the Brownian movement of
the nanoparticles is primarily responsible for the enhancement in the heat conductivity of nanofluids [34].
However, the authors established the model for predicting the thermal conductivity by the empirical combi-
nation of the parameters based on data from Nusselt correlation for particle-to-fluid heat transfer in fluidized
beds, and the exact origin of the empirical constants is not understood. Clearly, only a direct simulation of the
Brownian motion of nanoparticles together with the thermal convection can provide deep insight into the
mechanism by which the thermal conductivity is enhanced and thereby a solid foundation for the application
of the nanofluids associated with its unusual thermal properties.

For the simulation of heat transfer in the solid/fluid system the boundary-fitted methods have been pre-
dominantly used. For example, with commercial software, McKenna et al. [30] studied the heat transfer from
catalyst spheres, and Nijemeisland and Dixon [35] investigated the heat transfer in a fixed bed of spheres. Gan
et al. [36,37] numerically simulated the sedimentation of solid particles with thermal convection using the ALE
finite-element method, and these two are the only numerical works we found in the literature for the case
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where both the motion of the particles and the heat transfer are considered, however, the authors imposed a
fixed temperature on the particle boundary, which is an unrealistic boundary condition. There are very limited
works involving the application of the non-boundary-fitted methods to the heat transfer problems. Kim and
Choi [38] and Pacheco et al. [39] developed the immersed-boundary finite-volume method for the heat transfer
in complex geometries, respectively, where no particle motion is considered. In the present study, we not only
show that the DLM/FD method is a reliable and efficient method for the heat transfer problem in complex
geometries, but also extend the method to a new field: particulate flows where heat conduction inside the mov-
ing particles and thermal convection in the fluids are coupled.

The rest of the paper is organized as follows: we first derive a new combined temperature DLM/FD for-
mulation for the case of freely varying temperature on the particle boundary, present the governing equations
for the flow based on the Boussinesq approximation, and describe our computational scheme in the following
section. We then verify our method for the case of fixed temperature on the boundary by comparing our
results on the natural convection driven by a hot cylinder placed eccentrically in a square enclosure and
the sedimentation of a cold particle in a vertical channel to the data available in the literature. For the case
of freely varying temperature on the boundary, we show that our method is able to produce mesh-size and
time-step convergent results in a test problem: motion of a catalyst particle in an enclosed box. The method
is then applied to the preliminary analysis of the heat conductivity of sheared non-Brownian suspensions and
nanofluids, respectively. Concluding remarks are given in the final section.
2. Numerical model

A schematic diagram of the fictitious domain method is depicted in Fig. 1. We only consider the 2D case in
this study, however, the extension of the algorithm to the 3D case is straightforward. For simplicity of descrip-
tion, only one particle is considered. Let P(t) and oP(t) represent the solid domain and its boundary, X the
entire domain comprising both interior and exterior of the body, and C the boundary of X. We assume a
Dirichlet boundary condition on the outer boundary C for both velocities and temperature for convenience
of exposition.

2.1. DLM/FD formulation for temperature equation

2.1.1. The case of freely varying temperature on the particle boundary
1. Fluid temperature equation:
qfcpf

dT f

dt
¼ kfr2T f þ Qf in X n PðtÞ; ð1Þ

T f ¼ T C on C. ð2Þ
2. Solid temperature equation:
qscp

dT s

dt
¼ ksr2T s þ Qs in P ðtÞ. ð3Þ
Ω

P
P

P
Γ

P
P

PP
P

P

Fig. 1. Schematic diagram of the fictitious domain method.
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The fluid and solid temperatures are coupled via:
T f ¼ T s on oP ; ð4Þ

kf

oT f

on
¼ ks

oT s

on
on oP . ð5Þ
In the above equations, Tf, qf, cpf, kf, and Qf denote the fluid temperature, density, heat capacity (or specific
heat), heat conductivity, and heat source, respectively, and Ts, qs, cps, ks, and Qs are corresponding solid quan-
tities. In (4), n is the normal unit vector on the solid surface directing inwards the fluid. In (1), we neglect the
contribution from the viscous dissipation, but it can be included in the heat source Qf, if necessary. Note that
in the above equations, ‘dð Þ

dt ’ represents the material derivative. If a quantity T is described in the Eulerian
frame, then dT

dt ¼ oT
ot þ u � rT , here u being the velocity.

Next, we follow the procedure of Glowinski et al. [4] and Yu [19] to derive the FD/DLM formulation for
the heat transfer problem specified above.

Weak form: We define the following combined temperature space,
HT ¼ fðT f ; T sÞjT f 2 H 1ðX n P Þ; T s 2 H 1ðP Þ; T f ¼ T s on oP ; T f ¼ T C on Cg; ð6Þ

and corresponding combined variance space
H0 ¼ fð� f ; � sÞj� f 2 H 1ðX n P Þ; � s 2 H 1ðP Þ; � f ¼ � s on oP ; � f ¼ 0 on Cg; ð7Þ

and perform the following symbolic operations:
Z

XnP
Eq. (1) � f dxþ

Z
P

Eq. (3) � s dx. ð8Þ
Integrating the diffusion terms by parts and considering (5), we get
Z
XnP

qfcpf

dT f

dt
� Qf

� �
� f dxþ

Z
XnP

kfrT f � r� f dxþ
Z

P
qscps

dT s

dt
� Qs

� �
� s dxþ

Z
P

ksrT s � r� s dx

¼ 0 for all ð� f ; � sÞ 2 H0. ð9Þ
The heat flux through the particle boundary vanishes in the combined temperature equation (9), since they
represent an internal heat flux for the combined system, which is much like the case of the combined momen-
tum equation where the hydrodynamic force on the particle boundary vanishes since it becomes an internal
force for the combined system [4].

FD weak formulation: To construct a fictitious domain formulation, we extend the fluid computational
domain from XnP to X, and couple the temperatures Tf and Ts not only via the particle surface oP, but
the entire solid domain P. The combined temperature and variance spaces are modified as follows:
eHT ¼ fðT f ; T sÞjT f 2 H 1ðXÞ; T s 2 H 1ðPÞ; T f ¼ T s in P ; T f ¼ T C on Cg; ð10ÞeH0 ¼ fð� f ; � sÞj� f 2 H 1ðXÞ; � s 2 H 1ðP Þ; � f ¼ � s in P ; � f ¼ 0 on Cg. ð11Þ
Noting that
Z
P

qfcpf

dT f

dt
� Qf

� �
ð� f � � sÞdxþ

Z
P

kfrT f � rð� f � � sÞdx ¼ 0 for all ð� f ; � sÞ 2 eH0 ð12Þ
and adding (12) to (9), we obtain the following FD-based weak formulation for ðT f ; T sÞ 2 eHT
Z
X

qf cpf

dT f

dt
� Qf

� �
� f dxþ

Z
X

kfrT f � r� f dxþ
Z

P
ðqscps � qf cpfÞ

dT s

dt
� ðQs � QfÞ

� �
� s dx

þ
Z

P
ðks � kfÞrT s � r� s dx ¼ 0 for all ð� f ; � sÞ 2 eH0. ð13Þ
DLM/FD weak formulation: Finally, the distributed Lagrange multiplier is introduced to relax the constraints
‘Tf = Ts in P’ from the combined temperature space and the corresponding constraint from the combined
variance space, leading (13) to the following DLM/FD formulation for T f 2 HT, Ts 2 H1(P) and kT 2 K(P):
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Z
X

qf cpf
dT f

dt
�Qf

� �
� f dxþ

Z
X

kfrT f � r� f dx ¼
Z

P
kT� f dx for all � f 2 H0; ð14ÞZ

P
ðqscps � qf cpfÞ

dT s

dt
� ðQs �QfÞ

� �
� s dxþ

Z
P
ðks � kfÞrT s � r� s dx ¼ �

Z
P

kT� s dx for all � s 2 H 1ðPÞ; ð15ÞZ
P
ðT f � T sÞfT dx ¼ 0 for all fT 2 KðPÞ; ð16Þ
where kT and fT are the distributed Lagrange multiplier and its variance for the temperature defined in an
appropriate space K(P), respectively, and
HT ¼ fT f jT f 2 H 1ðXÞ; T f ¼ T C on Cg; ð17Þ
H0 ¼ f� f j� f 2 H 1ðXÞ; � f ¼ 0 on Cg. ð18Þ
In this study, we use the collocation-point-like method [19] to enforce the two temperatures to equal each
other. The method is resulted from taking K(P) as H1(P) and using the trapezoidal rule to perform the inte-
gration on discrete solid elements.

2.1.2. The case of fixed temperature on the particle boundary

If the temperature on the particle boundary is fixed, then the solution of the solid temperature is not nec-
essary and we only need to enforce the Dirichlet boundary condition via a Lagrange multiplier defined on the
particle boundary (Glowinski et al. [8]). The DLM/FD formulation in this case reads: find T f 2 HT, and
kT 2 L2(oP), satisfying:
Z

X
qfcpf

dT f

dt
� Qf

� �
� f dxþ

Z
X

kfrT f � r� f dx ¼
Z

P
kT� f dx for all � f 2 H0; ð19ÞZ

oP
ðT f � T bÞfT dx ¼ 0 for all fT 2 L2ðoP Þ; ð20Þ
where Tb is the given temperature on the particle boundary.

2.2. DLM/FD formulation for flow

The combined momentum equations have been derived by Glowinski et al. [4] as follows:
Z
X

qf

du

dt
� qfg

� �
� vdxþ

Z
X

r : rvdx�
Z

P
k � vdx ¼ 0; ð21ÞZ

X
qr � udx ¼ 0; ð22Þ

1� qf

qs

� �
M

dU

dt
� Vþ J

dx

dt
� n

� �
�
Z

P
ðqs � qfÞg � ðVþ n� rÞdxþ

Z
P

k � ðVþ n� rÞdx ¼ 0; ð23ÞZ
P
½u� ðUþ x� rÞ� � fdx ¼ 0; ð24Þ
where u and r are the fluid velocity and stress, M, J, U and x the particle mass, moment of inertia, translational
velocity and angular velocity, k the distributed Lagrange multiplier for the rigidity constraint, g the gravita-
tional acceleration, r the position vector with respect to the particle mass center, and v, q, V, n, f the variances
for the fluid velocity, the fluid pressure, the particle translational and angular velocities, and the Lagrange mul-
tiplier, respectively.

We now consider the coupling between the temperature and flow fields. Generally speaking, the change in
the temperature would affect all physical parameters of the fluids. However, to reasonably simplify the com-
putation, the Boussinesq approximation is commonly used, which states that the variance in the temperature
does not influence the fluid properties except for the density in the gravitational term. We may further assume
the same for the effect of the temperature on the solid properties for the case where the solid temperature is
considered. The relationship between the density in the gravitational term and the temperature reads:
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qf ¼ qf0½1� bfðT f � T 0Þ�; ð25Þ
qs ¼ qs0½1� bsðT s � T 0Þ�; ð26Þ
where qf0 represents the reference density of the fluids at the reference temperature T0, bf the fluid heat expan-
sion coefficient, and qs0 and bs the solid reference density and heat expansion coefficient, respectively. Substi-
tuting (25) and (26) into (21)–(24) yields:
Z

X
qf0

du

dt
� g

� �
� vdxþ

Z
X

qf0bfðT f � T 0Þg � v dxþ
Z

X
r : rv dx�

Z
P

k � vdx ¼ 0; ð27ÞZ
X

qr � u dx ¼ 0; ð28Þ

1� qf0

qs0

� �
M

dU

dt
� g

� �
� Vþ J

dx

dt
� n

� �
þ
Z

P
ðqs0bs � qf0bfÞðT f � T 0Þg � ðVþ n� rÞdx

þ
Z

P
k � ðVþ n� rÞdx ¼ 0; ð29ÞZ

P
u� ðUþ x� rÞ½ � � fdx ¼ 0. ð30Þ
In (29), Tf can be written as Ts if Ts in the solid domain is considered, since they are equal to each other in P.

2.3. Dimensionless governing equations

The governing equations discussed above can be non-dimensionalized by introducing the following scales:
Lc for length, Uc for velocity, Lc/Uc for time, qf0U 2

c for the pressure p, and qf0U 2
c=Lc for the Lagrange multi-

plier. For convenience, we write the dimensionless quantities in the same form as their dimensional counter-
parts, unless otherwise specified. There normally exist two characteristic temperatures for the thermal
problem, and we define one as T0 and the other as Tm. Then the dimensionless temperature can be defined
by T ¼ T�T 0

T m�T 0
. From (27)–(30), we get the dimensionless governing equations for the incompressible flows of

Newtonian fluids as follows:
Z
X

ou

ot
þu �ru

� �
�vdxþ

Z
X
�pIþ 1

Re
ðruÞT

� �
:rvdx¼

Z
P
k �vdx�

Z
X

Gr

Re2
T f

g

g
�vdx; ð31ÞZ

X
qr�udx¼0; ð32Þ

ðqr�1Þ S�p
dU

dt
�Fr

g

g

� �
�VþJ �

dx

dt
�n

� �
¼�

Z
P
k � ðVþn� rÞdx�

Z
P
ðqrbr�1Þ Gr

Re2
T f

g

g
� ðVþn� rÞdx; ð33ÞZ

P
u�ðUþx� rÞ½ � �fdx¼0; ð34Þ
in which p is the fluid pressure, and the following dimensionless parameters are introduced:
density ratio : qr ¼
qs0

qf0

; ð35Þ

thermal expansion ratio : br ¼
bs

bf

; ð36Þ

Grashof number : Gr ¼ q2
f0bfL

3
cgðT m � T 0Þ

g2
; ð37Þ

Reynolds number : Re ¼ qf0U cLc

g
; ð38Þ

Froude number : Fr ¼ gLc

U 2
c

. ð39Þ
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Here the Froude number represents the relative importance of gravity with respect to inertia, and g denotes the
fluid viscosity. In (33), S�p and J* are dimensionless particle area and moment of inertia, defined by

S�p ¼ M=ðqsL
2
cÞ and J � ¼ J=ðqsL

4
cÞ. Note that these definitions are for the 2D case, and for the circular particle,

S�p ¼ pða�Þ2 and J � ¼ S�pða�Þ
2

5
, here a* being the dimensionless particle radius. In (31), ($u)T represents the

transpose of the velocity gradient.
The combined temperature equations (14)–(16) can be non-dimensionalized as follows:
Z

X

oT f

ot
þ u � rT f � Qf

� �
� f dxþ

Z
X

1

Pe
rT f � r� f dx ¼

Z
P

kT� f dx; ð40ÞZ
P
½ðqrcpr � 1Þ dT s

dt
� ðQs � QfÞ�� s dxþ

Z
P
ðkr � 1Þ 1

Pe
rT s � r� s dx ¼ �

Z
P

kT� s dx; ð41ÞZ
P
ðT f � T sÞfT dx ¼ 0; ð42Þ
where the following dimensionless quantities are introduced:
specific heat ratio : cpr ¼
cps

cpf

; ð43Þ

thermal conductivity ratio : kr ¼
ks

kf

; ð44Þ

Peclet number : Pe ¼ qfcpf U cLc

kf

; ð45Þ

dimensionless heat sources : Qf ¼
QfLc

qfcpfU cðT m � T 0Þ
; Qs ¼

QsLc

qfcpf U cðT m � T 0Þ
. ð46Þ
Note that Pe = RePr and Ra = Gr Pr, where Ra is the Rayleigh number and Pr is the Prandtl number defined
by Pr ¼ gcpf

kf
.

The dimensionless equations for (19) and (20) are:
Z
X

oT f

ot
þ u � rT f � Qf

� �
� f dxþ

Z
X

1

Pe
rT f � r� f dx ¼

Z
P

kT� f dx; ð47ÞZ
P
ðT f � T bÞfT dx ¼ 0. ð48Þ
3. Computational scheme

3.1. Fractional step scheme for equations of motion

Following Glowinski et al. [4] and Yu [19], we employ the first-order accurate fractional step (or operator-
splitting) scheme to decouple the system (31)–(34) into two sub-problems:

Fluid problem for u* and p:
Z
X

u� � un

Dt
� vdxþ

Z
X
�pIþ ðru�ÞT þ ðrunÞT

2Re

" #
: rvdx ¼

Z
X

1

2
ð3Gn �Gn�1Þ � vdxþ

Z
P n

kn � vdx; ð49ÞZ
X

qr � u� dx ¼ 0; ð50Þ
where G ¼ �u � ru� Gr
Re2 T f

g

g.
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Particle problem for Un+1, xn+1, un+1 and kn+1:
Z
X

unþ1 � u�

Dt

� �
� vdx ¼

Z
P n
ðknþ1 � knÞ � vdx; ð51Þ

ðqr � 1Þ S�p
Unþ1 �Un

Dt
� Fr

g

g

� �
� Vþ J �

xnþ1 � xn

Dt
� n

� �
¼ �

Z
P n

knþ1 � ðVþ n� rÞdx�
Z

P n
ðqrbr � 1Þ Gr

Re2

3

2
T n

f �
1

2
T n�1

f

� �
g

g
� ðVþ n� rÞdx; ð52ÞZ

P n
unþ1 � ðUnþ1 þ xnþ1 � rÞ
� �

� fdx ¼ 0. ð53Þ
One may set kn in (49) and (51) to be zero, as in Glowinski et al. [4], but we found that the presence of this term
is helpful to reduce the error in the steady solution and allows one to use a significantly larger time step for low
Reynolds flows.

3.1.1. Solution of fluid sub-problem

As proposed in [16], the finite-difference-based projection method on a half-staggered grid is used to solve
the fluid sub-problem (49) and (50), where ‘‘half-staggered grid’’ means that the velocity components are col-
located but the pressure nodes are staggered with the velocity nodes, the same pattern as ‘‘Q1 � P0’’ finite-ele-
ment scheme [40,15]. Because the fluid velocities need to be interpolated between the Eulerian and the
Lagrangian frames in the resolution of the particle problem (51)–(53), the half-staggered scheme is simpler
than the commonly used completely-staggered scheme, and furthermore our 2D tests for the square grid
showed that the former provided solutions of a little better quality and exhibited no sign of deterioration
in robustness compared to the latter.

The following projection scheme is used to further decouple (49) and (50) (assume Dirichlet boundary
condition):

1.
u# � un

� 1 r2u# ¼ 1 r2un �rpn þ kn
P þ

1 ð3Gn �Gn�1Þ; u# ¼ uC on C. ð54Þ

Dt 2Re 2Re 2
2. r2/ ¼ r � u
#

;
o/ ¼ 0 on C. ð55Þ
Dt on

� #
3.
u � u

Dt
¼ �r/; ð56Þ
pnþ1 ¼ pn þ /. ð57Þ

4), kn
P represents
In (5
kn
P ¼

1

h2

Z
P n

kn � vdxn; ð58Þ
where h denotes the fluid mesh size, and v now represents the bi-linear interpolation function for the fluid
nodes. The coefficient 1

h2 stems from the diagonal mass matrix h2I of the finite-element scheme for the square
grid, when reduced to the finite-difference scheme. The trapezoidal rule is used to integrate (58). It can be easily
verified that replacing (57) with pnþ1 ¼ pn þ /� Dt

2Rer
2/ yields an exactly second-order accurate scheme for the

diffusion term [41], however, our tests showed that the effect of this modification on the results is always neg-
ligibly small. The time and space discretization schemes for the Lagrange multiplier terms were observed most
crucial to the accuracy of our DLM/FD code.

Eq. (54) is a diffusion problem and can be further decomposed into two tri-diagonal systems with the ADI
technique. We adopt the following version:
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unþ1=2 � un
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ðr2
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Re
ðr2

xunþ1=2 þr2
y u#Þ þ kn

P �rpn þ 1

2
ð3Gn �Gn�1Þ. ð59Þ
Eq. (55) is an elliptic problem on a staggered grid with a homogeneous Neumann boundary condition and can
be efficiently solved by using a combination of a specialized fast cosine transformation (FCT) and a tri-diagonal
system solver. The reader can find the codes of both FCT and a tri-diagonal system solver in Press et al. [42].

All derivatives in above equations are discretized with the central difference scheme.

3.1.2. Solution of particle sub-problem
The particle sub-problem (51)–(53) is a saddle-point problem and can be efficiently solved with the Uzawa

conjugate gradient iterative method (Glowinski et al. [4]). The key issue is the spatial discretization of the
Lagrange multiplier terms involving both Eulerian and Lagrangian quantities. The collocation-point method
is the simplest and most efficient one, and has been widely used [4,16], however, we found that the calculated
drag coefficient for the particle sedimenting in a bounded or periodic domain at low Reynolds numbers is
always overestimated by a few percent if on the particle boundary the collocation points are also distributed.
Höfler et al. [3] observed the same in their IB simulations and attributed this to the fact that the effective
hydrodynamic radius of the particle is expected to be slightly larger than the geometrical radius of the refer-
ence point arrangement because each point controls a fluid volume reaching beyond its geometric location by
h/2 in each direction. Therefore, one needs to retract the collocation points slightly from the particle geometric
surface of prescribed radius in order to improve the accuracy. In the present study, the collocation-element
method proposed by Yu et al. [15] is employed for its advantage that the above ad hoc adjustment of the
particle radius is not required. The collocation-element method resembles the finite-element method with
piecewise constant Lagrange multipliers on elements but differs in that it is a meshless method, which facili-
tates the construct of homogeneous discrete elements. Fig. 2 shows the element arrangement used in our col-
location-element method: small circular elements with the center points distributed on concentric rings [15]
and with the radius being slightly larger than the velocity mesh size for the good convergence rate of the
Uzawa iteration [4]. The velocity of each element is obtained by averaging the velocities on the center point
and the N points homogeneously located on the boundary with the center–boundary weight ratio of N/2 from
the trapezoidal rule, and is then required to satisfy the rigid-body motion constraint. The velocities on the col-
location points are determined from the bi-linear interpolation. The element arrangement shown in Fig. 2 dif-
fers from the one devised in [15] where some layers of boundary-fitted elements were used together with the
inner meshless elements. The former is chosen here because it is simpler and produces almost equally accurate
results; both errors in the calculated particle terminal settling velocities at low Reynolds numbers with the
a b

Element arrangement in the collocation-element method for the Lagrange multiplier associated with the rigidity constraints:
ically used in association with the velocity mesh size of h = a*/8, and (b) h = a*/16, a* being the dimensionless particle radius.
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velocity mesh size of h = a*/8 (a* being the particle radius) for a fairly wide channel (e.g. 8a* width) were
observed within 1% compared to the analytical solution. Four points on each element boundary (N = 4) is
enough for accuracy in the case of h = a*/8, but the use of more points was observed beneficial to the improve-
ment of smoothness in the particle velocity in case of coarse meshes (e.g. h = a*/4).

3.2. Solution of temperature equations

3.2.1. The case of fixed temperature on the particle boundary

The fractional step scheme is also used to decouple the system (47) and (48) into two sub-problems: tem-
perature problem for T �f :
Z

X

T �f � T n
f

Dt
þ 3

2
un � rT n

f �
1

2
un�1 � rT n�1

f

� �
� Qf

� �
� f dxþ

Z
X

1

2Pe
ðrT �f þrT n

f Þ � r� f dx ¼
Z

oP n
kn

T� f dx

ð60Þ

and Lagrange multiplier problem for T nþ1

f and kTT nþ1:
Z
X

T nþ1
f � T �f

Dt

� �
� f dx ¼

Z
oP n
ðknþ1

T � kn
TÞ� f dx; ð61ÞZ

oP n
½T nþ1

f � T b�fT dx ¼ 0. ð62Þ
Following the schemes for the flow problem, we solve the temperature equation (60) with the finite-difference
ADI method and the Lagrange multiplier problem (61) and (62) with the Uzawa iteration. The particle bound-
ary is partitioned into 40 homogeneous line collocation elements for the case of h = a*/8 and 80 for h = a*/16.
One center point and two end points are used to calculate the average velocity of the element with the center–
end weight ratio of 2. The bi-linear interpolation function is also used for the temperature problems here and
below.

3.2.2. The case of freely varying temperature on the particle boundary

The system (40)–(42) can be discretized in time with a fully implicit scheme as follows:
Z
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T nþ1
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f
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f
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þ
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T � f dx; ð63ÞZ
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ðqrcpr � 1Þ T

nþ1
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s

Dt
� ðQs � QfÞ

� �
� s dx

þ
Z

P n

ðkr � 1Þ
2Pe

ðrT nþ1
s þrT n

s Þ � r� s dx ¼ �
Z

P n
knþ1

T � s dx; ð64ÞZ
P n
ðT nþ1

f � T nþ1
s ÞfT dx ¼ 0. ð65Þ
The solid temperature is solved in a Lagrangian frame, thus there is no convection term in (64). Regarding the
space scheme, the left-hand side terms in (63) are discretized with the (central) finite-difference scheme, the left-
hand side terms in (64) are discretized with the (bi-linear) finite-element scheme, and all other terms involving
the Lagrange multiplier or its variance are discretized with a collocation-point-like method, which is resulted
from taking the Lagrange multiplier space as H1(P) and using the trapezoidal rule to perform the integration
on discrete solid elements. The collocation-point-like scheme resembles the collocation-point scheme in that
the temperature constraint (65) is also satisfied point-by-point but differs in that the discrete product of the
Lagrange multiplier and the temperature shape function is weighted with the support area of the solid
temperature shape function. Apparently, the weights for the points on the boundary are smaller than those
for inner points in case of homogeneous meshes, as compared to the same weight (unity) for all points in
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the collocation-point method. Zero-weight for the boundary points means the elimination of these points,
therefore, instead of retracting the collocation points from the boundary, one could also circumvent the draw-
back of the collocation-point method discussed earlier by reducing appropriately the relative weight for the
points on the particle boundary, as also confirmed in our test problems of sedimentation.

The system (63)–(65) is a saddle-point problem and is solved with the Uzawa conjugate gradient method
(Glowinski et al. [4]). In the Uzawa iteration, the fluid temperature sub-problem is solved with the conjugate
gradient iteration and the solid temperature sub-problem is solved with the LU decomposition method [42];
note that the LU decomposition just needs to be done once. The iteration was found convergent for the case of
(qrcpr � 1)(kr � 1) > 0, but not for (qrcpr � 1)(kr � 1) < 0, namely negative diffusion for the solid temperature
sub-problem (64). The difficulty could be overcome by using other solvers, but we postpone the study to a
future work. In the following, we present a very simple scheme for the solution of the temperature system
(40)–(42), based on the fully explicit computation of the Lagrange multiplier. This simple scheme is not only
much more efficient than the fully implicit scheme in the general case, but also works in case of (qrcpr � 1)-
(kr � 1) < 0, as long as both (qrcpr � 1) and the time step are small.

Following the spirit of the IB method proposed by Peskin [18], we devise the simple scheme as follows: first
solve the diffusion problem
Fig. 3.
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then set T nþ1
s ¼ T nþ1

f at the collocation points via the bi-linear interpolation, and finally explicitly calculate the
Lagrange multiplier with the following equation:
�
Z

P n
knþ1

T � s dx ¼
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P n
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ð67Þ

The space discretization schemes for (66) and (67) are the same as used in the fully implicit scheme discussed
above. Eq. (66) can be also solved with the ADI approach.

The validation and discussion on the simple scheme will be presented later. Fig. 3 shows three meshes tested
in this study for the solid temperature. The size of any individual solid element being larger than the fluid mesh
size ensures a good convergence rate in the Uzawa iteration (typically less than 5 iterations).

3.3. Collision model

Before concluding this section, we briefly describe our updated collision strategy. The collision models for
the particulate flows can be classified into two categories: binary hard-sphere model and soft-sphere model
[43]. For the hard-sphere model, the momentum exchange between two colliding particles takes place exactly
at the time when the two particles touch and the post-collision velocities of the particles are determined from
M3M2M1a b c

Three meshes for the solid temperature. M1 has 88 elements and 104 nodes, M2 has 145 elements and 166 nodes, and M3 has 333
ts and 364 nodes. M1 and M2 are used with the fluid mesh h = a*/8 and M3 is used with h = a*/16, a* being the particle radius.
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the system momentum conservation and energy conservation or loss (elastic or inelastic collision). In contrast,
for the soft-sphere model, the velocities of colliding particles are determined from the Newton’s equation of
motion with the collision forces of soft-potential as a function of the separation or overlap distances between
the particles and possibly the particle velocities. The behavior of particles in a non-concentrated suspension is
mainly controlled by the long-range hydrodynamic interactions and is insignificantly affected by the short-
range interactions [44]. Therefore, one can choose any collision model primarily for numerical convenience.
A soft-sphere model with an artificial repulsive force was developed by Glowinski et al. [4] and was later used
by Yu et al. [15] in the DLM/FD simulations. An inconvenience in this model is that one needs to adjust the
intensity of the repulsive force in order to ensure that the colliding particles neither overlap nor rebound too
much. We have substituted the analytical lubrication force for the artificial repulsive force in our DLM/FD
code.

We first split the Newton’s equation of motion
M
dU

dt
¼ Fl þ Fs ð68Þ
into
M
U� �Un

Dt
¼ Fl ð69Þ
and
M
Unþ1 �U�

Dt
¼ Fs; ð70Þ
where Fl denotes the long-range force on the particles that is not sensitive to the slight change in the particle
configuration and Fs denotes the short-range force. For simplicity of exposition, we only consider the trans-
lational equation, or one can consider that the above equations also include the angular components. From

(21), one can get the hydrodynamic force on the rigid particle FH ¼ �
R

P kdxþ M
qr

dU
dt . If we assume that the

Lagrange multiplier is only used to determine the long-range hydrodynamic force and does not depend on

the short-range force, we can define the long-range hydrodynamic force FlH ¼ �
R

P kdxþ M
qr

U��Un

Dt and deduce

(23) from (69). In the previous DLM/FD works [4,15], because the Lagrange multiplier is not independent of

the short-range force via FlH ¼ �
R

P kdxþ M
qr

Unþ1�Un

Dt , the operator splitting of (68) with the Lagrange multiplier

being substituted in gives (23) and
1� 1

qr

� �
M

Unþ1 �U�

Dt
¼ Fs ð71Þ
instead of (70). Since the artificial short-range force is adjusted for the numerical convenience, the coefficient
ð1� 1

qr
Þ does not matter, but in case of a physical short-range force we prefer (70) because we believe that it is

more physical and it avoids the singularity at qr = 1 in (71).
In the case of relatively low Reynolds numbers, we have incorporated the lubrication force in our code by

adopting and modifying the ASD code [5]. Eq. (70) is rewritten as follows:
M
Unþ1 �U�

Dt
¼ FsH þ FsP; ð72Þ
where FsH represents the short-range hydrodynamic force, namely the lubrication force, which is expressed as
FsH ¼ �½RðrÞ � Rðr0Þ� �U; ð73Þ

here R being the resistance matrix, r the connectors between particles, r0 ¼ r0

r
jrj so that the lubrication force

correction vanishes at the cut-off distance r0 [45], U the vector of particle velocities (including the angular
velocities), and FsP denotes a short-range repulsive force with a very small range [5]. From the theoretical point
of view, the lubrication force alone can prevent the particle overlap since the force diverges when two particles
touch each other. However, the particle overlap can take place in the numerical simulations due to the fact
that a finite time-step is used for the calculation of the particle trajectories. In fact, for relatively concentrated
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suspensions, the numerical overlap between particles is unavoidable even if the repulsive force is added. As in
the ASD code, when the overlap is detected, we set the inter-particle distance between overlapping particles to
be 10�8a* for the calculation of the forces while keeping the particle positions unchanged. The repulsive force
will drive the overlapping particles to move apart, and the simulation would be terminated if the overlapping
distance is found to exceed 0.05a*. In the present study, the cut-off distance for the lubrication force FsH is set
to be the fluid mesh size and that for the repulsive force FsP is 10�3a*.

One can find the expressions of the full resistance matrices for the two-sphere [46] and sphere-wall problems
[47]. For the 2D circular particle, only the most singular component due to the squeezing flow is normally con-
sidered in the literature. We take the form from [48] for this component and use the sphere counterparts for all
other components from the numerical convenience point of view. Eq. (72) is implicitly solved with an efficient
incomplete Choleski conjugate gradient method; the reader is referred to [5] for the discussion of this solver,
and [49] for the expression of FsP and its effect on the rheology of concentrated suspensions.

4. Numerical experiments and discussions

We first verify our method for the case of fixed temperature on the boundary by comparing our results on
the natural convection driven by a hot cylinder placed eccentrically in a square enclosure and the sedimenta-
tion of a cold particle in a vertical channel to the data available in the literature. For the case of freely varying
temperature on the boundary, we show that the method is able to produce mesh-size and time-step convergent
results in a test problem: motion of a catalyst particle in an enclosed box. Finally, the method is applied to the
preliminary analysis of the heat conductivity of nanofluids and sheared non-Brownian suspensions, respec-
tively. Throughout the study, the heat source in the fluids is not considered, i.e., Qf ¼ 0.

4.1. Case of both fixed velocity and temperature on the boundary: cylinder placed eccentrically in a square

enclosure

Fig. 4 shows the schematic diagram of our first test problem: a natural thermal convection driven by a hot
cylinder placed eccentrically in an enclosed square. We take the edge length of the square as the characteristic
length. The dimensionless diameter of the cylinder d = 0.4, and the eccentric distance e = 0.1. The dimension-
less temperature is unity on the cylinder surface and vanishes on two side walls. The horizontal walls are
adiabatic.
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Fig. 4. Schematic diagram of a natural thermal convection problem arising from a hot cylinder placed eccentrically in an enclosed square.
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The governing equations for the temperature are (47) and (48), and for the flow are (31), (32) and (34) with
U = x = 0. Therefore, we actually use a boundary Lagrange multiplier for the temperature and a body
Lagrange multiplier for the flow. We believe that the boundary Lagrange multiplier is better than the body
one for the case of the Dirichlet condition on the boundary because the former is not only more efficient
due to fewer degrees of freedom, but more accurate since the boundary condition is better satisfied. We choose
the body Lagrange multiplier for the flow problem here just for a convenience that we can use the same code as
for freely moving particles. The computed local Nusselt numbers (i.e., dimensionless temperature normal
derivative on the boundary) along the side wall at Re = 0.1, Pe = 1 and Gr = 105 are plotted in Fig. 5 and
compared to the benchmark results of Demirdžić et al. [50]. We see an excellent agreement between the
two results.

4.2. Case of fixed temperature on the boundary of a freely moving particle: sedimentation of a cold particle in a
vertical channel

Gan et al. [36] simulated the sedimentation of particles in a vertical channel with thermal convection using
the ALE finite-element method, and the results for a cold particle settling in a channel of 8a* width were pre-
sented and analyzed in full detail, providing a good test problem to verify our method. Gan et al. summarized
some features of their method as the following. An unstructured mesh of triangular elements is generated by
the Delaunay–Voronoi method. As the particles move, the mesh moves and deforms according to a ‘mesh
velocity’ determined by a Laplace equation. When the elements become severely distorted, a remeshing and
projection procedure is carried out to restore mesh quality. When a particle approaches another particle or
a wall, the local mesh is automatically refined. Such a boundary-fitted method is supposed to be more accurate
than our stationary-grid-based method for the simulation of motion of individual particles, but for the case of
suspensions of multiple-particles, the frequently required remeshing and projection leads to a significant
increase in the computational cost and the deterioration of accuracy. Due to the use of fixed mesh, our method
is easy to implement and the parallelization of the code is simple. Therefore, our method is suited to a large-
scale simulation of particulate flows. In addition, the method of Gan et al. has not been extended to the case of
freely varying temperature on the particle boundaries.

Following Yu et al. [15], for the case of relatively strong inertial effect we define the characteristic velocity as
Fig. 5.
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so that one can conveniently obtain the standard drag coefficient Cd from Cd ¼ 1=ðU �TÞ
2, here a being the

particle radius, and U �T the computed dimensionless terminal settling velocity. Another advantage of this
non-dimensionalization scheme is that U �T is always not far away from unity. The Froude number (39) becomes
y
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Comparison between Demirdžić et al. [50] and our results on the local Nusselt number along the side wall for the cylinder placed
rically in a square enclosure.
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Fr ¼ 1

pa�ðqr � 1Þ . ð75Þ
We take the particle diameter as the characteristic length, so a* = 1/2.
Since the interior solid temperature is not considered in the present case, it is not possible (or not nec-

essary) to evaluate its effect on the buoyant force on the particle. Indeed, Gan et al. did not consider this
effect, therefore, we set br to be zero in (33). The dimensionless physical parameter group comprises qr, Gr,
Re and Pr. As in Gan et al., we set qr = 1.00232 and Pr = 0.7. Gan et al. did not report sufficient physical
parameters that allow us to compute the exact value of Re, but they mentioned that the Reynolds number
based on the terminal settling velocity ReT at zero Gr is 21. Note that ReT ¼ ReU �T. Our tests showed that
Re being 40.5 with other parameters given above yields a value of 21.2 for ReT. The difference in ReT is
small, so we let Re be 40.5. The dimensionless temperature is unity on the particle boundary and zero
on the side walls; then a cold particle implies a negative Grashof number, but we will refer to its magnitude
below. The computational channel has width of 4 and height of 32. To mimic an infinitely high channel, we
shift the flow fields and the particle position upwards one mesh distance once the particle falls below a ver-
tical position that is 8 higher than the bottom inlet so that the channel looks like moving with the particle
[15,16]. The initial velocities of the particle and fluids and the initial temperature are zero. In the following,
we present the results for different Grashof numbers obtained with h = 1/32 and Dt = 0.005, and compare to
those of Gan et al.

Gan et al. established five Gr regimes according to the particle lateral equilibrium positions and the wake
structures as follows:

� Regime A (0 < Gr < 500): The particle settles steadily along the centerline and the wake vortices are steady
and symmetric.
� Regime B (500 < Gr < 810): Vortices shed from the particle and the particle oscillates regularly about the

channel centerline.
� Regime C (810 < Gr < 2150): The particle achieves steady-state settling close to one of the walls and there is

no vortex shedding at the steady-state.
� Regime D (2150 < Gr < 4500): The centerline becomes once again a stable equilibrium position and vortex

shedding remains absent.
� Regime E (Gr > 4500): The regime is characterized by the re-emergence of lateral oscillations about the cen-

terline, and the authors attributed this to the roll-up of shear layers in the wake due to Kelvin–Helmholtz
instability.

In the simulations of Gan et al., the particles were released at the centerline, which has a drawback that the
trajectories in case of particle migrating away from the centerline are not deterministic since the migrations
depend on the random numerical disturbances. We here release the particles at a lateral position being one
particle radius away from the centerline. Figs. 6 and 7 show the vorticity contours and the evolutions of lateral
particle positions at different Grashof numbers, respectively, and we see that the features of all regimes
described above are well reproduced in our simulations. Gan et al. observed two types of migrations in Regime
C: one with oscillation as a natural extension of Regime B, and the other without oscillation. Both are also
reproduced in Fig. 7, and we found that the wake structure is responsible for the difference: for the former
the wake vortices are attached to the particle, whereas for the latter at least one branch of the wake structures
is detached from the particle, as shown in Fig. 6c. The alternating vortex shedding (or roll-up as observed by
Gan et al.) from the detached wake structures at Gr = 4000 (Fig. 6e) does not affect the particle’s motion as
much as from the attached ones at Gr = 564 (Fig. 6b) because of much stronger confinement effects on the
particle motion imposed by the detached circulations on both sides of the particle in the former case
(Fig. 6e); the oscillation in the lateral position for Gr = 4000 is so small that it is indiscernible if plotted in
Fig. 7. The particle lateral equilibrium position at Gr = 2000 is around 0.75 away from the centerline and
agrees well with the result of Gan et al.

Despite good agreement for Gr < 4000, the two results differ significantly at high Grashof numbers. Our
results at Gr = 4000 exhibit the feature of Regime E, resembling their results at Gr = 5000, rather than Regime
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Fig. 6. Vorticity contours for a cold circular particle settling in a vertical channel of 4 particle diameter width at different Grashof
numbers: (a) Gr = 100; (b) Gr = 564: (c) Gr = 2000; (d) Gr = 2500; (e) Gr = 4000; (f) Gr = 4500. (qr,Re,Pr) = (1.00232,40.5,0.7).
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Fig. 7. Time development of lateral positions of a cold circular particle settling in a vertical channel of 4 particle diameter width at
different Grashof numbers. The centerline is located at x = 2. (qr,Re,Pr) = (1.00232,40.5,0.7).
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D as specified above. At Gr = 4500, our flow becomes turbulence-like (Fig. 6f) and the particle oscillates vio-
lently but still regularly (Fig. 7), a new regime that was not detected by Gan et al. and we term Regime F here.
The reason for the discrepancies is not clear, however, it could be due to the fact that one normally uses a fine
mesh only for the region in the vicinity of the particle boundary in the ALE method, but a fine mesh for the
far-field region is probably also required to accurately predict the far-field instability at Gr = 4000 (Fig. 6e)
and the strong global instability at Gr = 4500 (Fig. 6f). We have used a homogeneously fine mesh and ensured
that our results are mesh-size and time-step independent.

Fig. 8 shows the comparison between the results of terminal-settling-velocity based Reynolds number ReT

at different Grashof numbers. Good agreement can be seen, particularly if considering the difficulty of the
problem caused by the competition between the forced and natural thermal convections and the strong wall
confinement, as reflected in the complex behavior of the curves in Fig. 8. In addition, as mentioned earlier, we
were not able to exactly match Re to Gan et al.’, and our Re being 40.5 results in a slightly larger ReT of 21.2
compared to Gan et al.’s 21 at zero Grashof number, a probable reason why our ReT are systematically higher
than Gan et al.’s at all Grashof numbers, as shown in Fig. 8.
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Fig. 8. Comparison of terminal-settling-velocity based Reynolds number ReT at different Grashof numbers for a cold circular particle
settling in a vertical channel of 4 particle diameter width.
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4.3. Case of freely varying temperature on the boundaries of freely moving particles

4.3.1. Motion of a catalyst particle in a box

We now consider the motion of a catalyst particle in a box with an assumption that the heat is generated
homogeneously inside the particle. The governing equations are (31)–(34) for the flow and (40)–(42) for the
temperature. The dimensionless physical parameter group is (Re,Gr,qr,kr,cpr,br). The same non-dimension-
alization scheme as for the cold particle problem above is used here. We set Re = 40, Gr = 1000 and
br = 0. The enclosed box has width of 8 and height of 16. At the initial time, all velocities and the temperature
are zero, and the particle is placed at the center of the box. We let Qs ¼ 1.

We have presented two schemes for the current problem: one is the coupled scheme based on the fully
implicit calculation of the Lagrange multiplier (63)–(65) and the other is the simple scheme based on the fully
explicit calculation of the Lagrange multiplier (66) and (67). Fig. 9 shows that the results obtained with the
two schemes for both sets of parameters (qr,kr,cpr) = (1.1,15,1) and (1.6,5,1) are in perfect agreement with
each other, indicating that the simple scheme is as accurate as the coupled scheme. However, the simple
scheme is found only applicable to small (qrcpr � 1); for example, when we changed (qr,kr,cpr) from
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Fig. 9. Comparison of the evolutions of vertical velocities for a catalyst particle in an enclosed box obtained with the coupled scheme
based on the fully implicit calculation of the Lagrange multiplier and the simple scheme based on the fully explicit calculation of the
Lagrange multiplier, respectively. Re = 40, Gr = 1000, cpr = 1, br = 0 and Qs ¼ 1. The results show that the two schemes are equally
accurate. The result for qr = 100 is also plotted in order to show that the large density ratio does not pose the difficulty for the coupled
scheme, although it does for the simple scheme.
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(1.6,5,1) to (1.8,5,1), the computation was not stable, regardless of the value of the time step. For the case of
large (qrcpr � 1), one therefore needs to treat implicitly the unsteady term of the solid temperature equation.
The coupled scheme is a candidate, and Fig. 9 confirms that it is stable at qr = 100. The intermediate scheme
based on the splitting of the Lagrange multiplier as we do for the flow problem is expected to work. In addi-
tion, one could follow the methods for the droplet (or bubble) problem [51,52] and solve a unified set of tem-
perature equations with different coefficients for the fluids and solid; similar approach has been implemented
in the IB method for fluid–structure interactions at non-unity density ratios [53]. The problem due to large kr

in the simple scheme is not as serious, and we found that its stability criterion is analogous to the one of the
explicit scheme for the convection–diffusion equation, which is not surprising since both the diffusion term of
the solid temperature equation and the convection term in the fluid equation are indeed treated explicitly in the
simple scheme. Thus, for large kr, the computation is stable as long as the time step is small enough, which
normally is not a serious problem since a small time step is also required by the dynamic simulation method.
Since we found that the code of the simple scheme runs faster than the one of the coupled scheme by typically
a factor of 7 for the same time-step, the simple scheme is used for all computations below.

The mesh-size and time-step convergence tests are performed at (qr,kr,cpr) = (1.1,5,1), and it can be seen
from Fig. 10a that the results are essentially independent of the meshes and time-steps used. As a result, we
choose the coarsest mesh M1 for all other computations in this study, unless otherwise specified. As mentioned
earlier, the coupled scheme with the Uzawa iteration fails at (qrcpr � 1)(kr � 1) < 0, whereas the results pre-
sented in Fig. 10b demonstrate that the simple scheme still works in such a case.

Fig. 11 shows the isotherms and flow fields at different times for (qr,kr,cpr) = (1.1,5.0, 1.0). At early stage,
the effect of the temperature on the flow is small and the particle falls downwards. With more and more heats
being generated inside the particle, a pair of buoyance-induced circulations have appeared by t = 5 (Fig. 11a)
and dominated the flow by t = 15 (Fig. 11b), leading the particle to rise up. Finally, the wall confinement stops
the particle from rising; from Fig. 10 we see that the particle vertical velocity almost vanishes at t = 20. Note
that this is not caused by the direct touch of the particle with the wall, but the suppression of natural convec-
tion near the particle (Fig. 11c). The natural convection is more severely inhibited at the upper side of the par-
ticle than at the bottom side and consequently we can see worse heat removal at the upper side than at the
bottom side (Fig. 11c).

If keeping other parameters unchanged, a reduction in cpr leads to a more rapid increase in the solid tem-
perature, and an enhancement in kr causes more rapid heat transfer from the solid bulk region to the boundary
and then to the fluids. Therefore, not surprisingly in Fig. 10b we see that the particle starts to rise earlier at
smaller cpr or larger kr. The density ratio qr plays the same role as cpr in the solid temperature equation, but it
also influences the particle inertia; the dimensionless velocity of a particle with large qr changes very slowly
with time, as illustrated in Fig. 9 for qr = 100.
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Fig. 10. (a) Evolutions of the vertical velocities of a catalyst particle computed with the simple scheme at different mesh-sizes and time-
steps, showing that our results are convergent with mesh-size and time-step; (b) at different specific heat ratios and heat conductivity ratios,
showing that the simple scheme works for (qrcpr � 1)(kr � 1) < 0.
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Fig. 11. Isotherms and velocity vectors for a catalyst particle in an enclosed box at different times. (Re,Gr,qr,kr,cpr,br) =
(40,1000,1.1,5.0,1.0,0.0).
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4.3.2. Heat conductivity of suspensions

The heat conductivity of suspensions can be measured with a plate system, whose schematic diagram in
two-dimensions is given in Fig. 12. The heat is inputted into the system through the top plate, resulting in

a bulk temperature gradient across the suspension at steady-state that is defined by rbT ¼ ðT 2�T 1Þ
H . From

the Fourier law, the effective (or bulk) heat conductivity of the suspension ke is determined from [54]
Fig. 12
impose
our co
ke ¼
�hqyiC2

rbT
; ð76Þ
here �hqyiC2
being the average input heat flux on the top plate. The micro-thermal-convection in the fluids

induced by the Brownian motion of the nanoparticles has been regarded as a mechanism to explain the unusu-
ally high ke of the nanofluids [34,33]. Following the Batchelor’s derivation for the bulk viscosity of the suspen-
sion [55], one can obtain the contribution of the micro-convection to the effective heat conductivity or any
effective macroscopic transport coefficient easily [56,57]. Consider a unified temperature equation
qcp

dT
dt
¼ �r � qþ Q ð77Þ
with corresponding physical quantities for the solid and fluid domains, where q is the heat flux. Multiplying y
to all terms in (77), integrating the resulting unsteady and source terms over the entire domain and integrating
the heat flux term in part, we get
R

C2
ð�qyÞdx
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. Schematic diagram of a 2D plate system measuring the effective heat conductivity of suspensions. A bulk temperature gradient is
d to the system in the y-direction, which is defined by rbT ¼ ðT 2�T 1Þ

H . A periodic boundary condition is imposed in the x-direction in
mputations.
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where qy is the heat flux in the y-direction, L the length of the cell, and S the area of the cell. As shown in
Fig. 12, we place the bottom plate at y = 0, thus the boundary integral on this plate vanishes. For homoge-
neous suspensions, (78) holds irrespective of the definition of the coordinate origin, since the average output
heat flux on the bottom plate should equal the input one on the top plate and the sum of the two terms again
yields the left-hand side term in (78), i.e., the average input heat flux through the top plate. One can easily
verify the following derivation:
1

S

Z
X
�qy dx ¼ 1

S

Z
Xf

kfryT f dxþ
Z

P
ksryT s dx

� �
¼ kfðT 2 � T 1Þ

H
þ 1

S

XN

i¼1

Z
oP i

ðks � kfÞnyT s dx

" #
; ð79Þ
in which Pi denoted the solid domain of the ith particle among the total N particles and Xf the fluid domain.
Without considering the heat source term, we can write the effective heat conductivity ke as a sum of the
molecular-heat-diffusion-related conductivity kd (sometimes referred to as diffusion-related conductivity
below) and the convection-induced conductivity kc:
ke ¼ kd þ kc; ð80Þ
kd

kf

¼ 1þ c/; c ¼ ðkr � 1Þ
NSpðrbT Þ

XN

i¼1

Z
oP i

nyT s dx; ð81Þ

kc
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¼ qfcpf

kfðrbT ÞS

Z
Xf

y
dT f

dt
dxþ qrcpr

Z
P

y
dT s

dt
dx

� �
. ð82Þ
In (81), Sp and / are the particle area and area fraction, respectively, and simply replacing them with the par-
ticle volume and volume fraction makes the above equations hold for the 3D case. Batchelor considered the
contribution of the Reynolds stress in the bulk viscosity of the suspension [55]. As an analogue, the Reynolds-
stress-type micro-convection term for the present problem has the form of �qf

S ½
R

Xf
u0yT

0
f dxþ qr

R
P u0yT 0s dx�, here

u0y being the fluctuating velocity in the y-direction and T 0f the fluctuating temperature. However, from the
above derivation, this Reynolds-stress-type micro-convection term does not contribute to the effective heat
conductivity of the suspension measured with the plate system (76), although it might play a role for the other
measuring systems such as the hot-wire system [58].

Taking the particle diameter d as the characteristic length and defining the dimensionless temperature by
T ¼ H

d
T�T 1

T 2�T 1
, we get:
ke

kf

¼ oT f

oy

	 

C2

; ð83Þ
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Z
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dT s
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� �
; ð85Þ
where hiC2
denotes averaging over the top plate, S* the dimensionless area of the cell, and x, y and t their

dimensionless counterparts. Note that to derive (83) we assume �qy ¼ kf
oT f

oy , so (83) is not valid if there are
particles touching the top plate; at the contact region, the solid conductivity ks rather than kf should be used
for the calculation of the heat flux.

It can be simply argued from (85) that the random motion of (solid or fluid) particles in the y-direction
leads to a positive kc. Suppose that one particle at y moves upwards Dy within Dt and gains a positive tem-
perature increment DT. It has the same probability that this particle (or other particles) moves downwards Dy

within Dt and undergoes a temperature drop DT. As a result, one gets a positive average hy dT
dt i � Dy DT

Dt �
ðDyÞ2

Dt .

Since Dt needs to be small enough to capture each fluctuation of the particles in order to estimate the
instantaneous temperature acceleration, ðDyÞ2

Dt here is not the long-term diffusion coefficient, but apparently,
the fluctuating velocities of the particles (and the related diffusion coefficient) play an important role in the
micro-convection-induced conductivity kc. We will not compute kc directly with (85) since it is more conve-
nient to calculate ke from (83) and kd from (81).
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Absence of convection effect: At very low Peclet numbers, the thermal convection effect can be neglected,
therefore, there is no difference between the measured effective heat conductivity ke and the molecular-heat-
diffusion-related one kd. The effective conductivity for the square array of circular particles was analyzed
by Perrins et al. [59]. We compare our results obtained with meshes M1 and M3 to theirs in Fig. 13.
Fig. 13a shows the comparison of the conductivity coefficient c defined in (81) in the dilute limit as a function
of the conductivity ratio kr. For our simulation, the dilute limit is approximated with placing one particle at
the center of a 16d · 16d square cell, which gives the particle area fraction of 0.00307. The further increase in
the system size was found to lead to a slightly lower conductivity coefficient. Our results obtained with mesh
M1 in Fig. 13a agree well with the analytical solution for kr < 5, but the numerical error starts to become pro-
nounced when kr exceeds 5 and the relative error reaches up to 8% at kr = 40. The finer mesh M3 is better used
for high kr since the accuracy of the solution can be significantly improved, as shown in Fig. 13a. Fig. 13b
shows the comparison of the relative effective heat conductivity ke/kf for the square array as a function of
the area fraction / at kr = 5. Four particles aligned with the y-axis are considered in our simulations because
we found that the difference between the computed conductivities for four and eight particles are negligibly
small. From Fig. 13b, the conductivities obtained with M1 are in good agreement with those of Perrins for
/ < 0.4 but higher than the latter for / > 0.5. A probable (primary) reason for this overestimation of the con-
ductivity at high area fractions is that we use a homogeneous mesh for the fluid equations and the insufficient
mesh resolution in the gap between particles results in the underestimation of the hindrance effect of the fluids
on the heat conduction at kr > 1. Not surprisingly, the accuracy of the solution at high / is improved signif-
icantly by the use of M3 (recall that the fluid mesh resolution is also doubled accordingly), as shown in
Fig. 13b. To sum up, our method with the coarse mesh M1 is reasonably accurate for the prediction of the
conductivity of the composite particularly at relatively low kr and /. The choice of the fine mesh M3 is ben-
eficial to the accuracy at high kr or /.

The conductivities of the random circular particle composite are calculated with a 16d · 16d cell for /
6 0.52 and are plotted in Fig. 13b. It is not surprising that they are slightly larger than those for the square
array. The conductivities at high / are not computed due to the difficulty in generating a random distribution
of particles.

It should be noted that due to the numerical error the effective heat conductivity computed at the top plate
(83) does not perfectly agree with the one computed at the particle boundary (81), but typically differs in the
fourth digit, which is accurate enough in terms of the heat conductivity, but not for the calculation of the coef-
ficient c in the dilute limit. We believe that c in the dilute limit is better calculated directly with (84).

Heat conductivity of sheared non-colloidal suspensions: Now we apply our method to analyze the heat con-
duction of non-colloidal suspensions in a Couette flow. The top and bottom plates move at different velocities,
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Fig. 13. (a) Effective heat conductivity coefficient c of a circular particle composite in the dilute limit as a function of the conductivity ratio
kr, as compared to the analytical solution c = 2(kr � 1)/(1 + kr); (b) relative effective heat conductivities ke/kf at kr = 5 as a function of the
area fraction for the square array and random distribution of circular particles, respectively; the results of Perrins et al. [59] for the square
array are plotted for comparison.
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giving rise to a linear shear flow of the fluids. Suppose that the shear rate is _c. We take the particle diameter d

as the characteristic length and d _c as the characteristic velocity, so that the characteristic time is ð _cÞ�1. The
effects of gravity and natural convection are not considered, i.e., Fr = 0 and Gr = 0. We here set kr = 5.0,
cpr = 1.0 and qr = 1.001.

We first examine the effect of the shear flow on the diffusion-related heat conductivity coefficient c defined in
(81) in the dilute limit. A single particle is freely suspended at the center of 16d · 16d Couette cell, the same
geometry as the last problem. Fig. 14 shows the conductivity coefficient c at steady-state as a function of the
Peclet number for Re = 0.2 and Pr = 10, respectively. It can be seen that the Peclet number has a negative
effect on the conductivity coefficient c in case of keeping Re = 0.2, whereas the Reynolds number has a positive
effect for the same Peclet numbers. Therefore, at a fixed Prandtl number, c is determined from the competition
between the effects of Re and Pe: for Pr = 10, c decreases slightly at small Pe, then increases and reaches the
maximum at Pe 	 30, and then decreases again, as shown in Fig. 14. To explore the reason for such effects of
Re and Pe, we plot in Fig. 15 the isotherms at four sets of (Re,Pe): (0.2,2), (0.2,50), (3, 30) and (5, 50). For
kr > 1, the conservation of the heat flux requires a smaller temperature gradient in the solid domain than in
the fluids. Thus we can see in Fig. 15 that the isotherms are expanded when passing through the particle. From
its definition (84), the value of c is determined from the average temperature gradient in the y-direction in the
solid domain for a fixed kr. Fig. 15a and b shows two effects of Pe on the isotherms: one is the declination of
the isotherms, meaning the deviation of the maximum-temperature-gradient direction from the y-direction as
a result of thermal convection; the other is the further increase in the gap between the isotherms, implying the
deduction in the temperature gradient. Both effects give rise to a lower average temperature gradient in the
y-direction (i.e., c) at a higher Peclet number. In contrast, a comparison between Fig. 15a and c indicates that
the effect of Re can enhance the temperature gradient in the solid domain as a result of the enhanced fluid
temperature gradient in the vicinity of the particle boundary at higher Re evidenced by the more crowded
isotherms there, and a comparison between Fig. 15b and d reveals that the deviation of the maximum-
temperature-gradient direction from the y-direction is also hindered by the effect of Re. The opposite effects
of Re and Pe on c therefore are explained.

For the problems involving only a few particles, our homogeneous-mesh based DLM/FD method is not
advantageous compared to the boundary-fitted methods in terms of accuracy and efficiency, although
Fig. 15 shows that the moderately large discontinuity of the temperature gradient on the particle boundary
for kr = 5 appears to be nicely handled by our code. The power of the FD method lies in the simulation of
moderately to highly concentrated suspensions of many particles. As an example, we simulate the motion
of 800 particles in a 64d · 32d Couette cell, which gives an intermediate area fraction / = 0.307. The computed
relative diffusion-related conductivities and the average temperature gradients in the y-direction on the top
plate at Re = 0.2 are depicted in Fig. 16. We were wrongly regarding the average temperature gradient on
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Fig. 14. Diffusion-related heat conductivity coefficient c of a sheared non-colloidal suspension of circular particles in the dilute limit as a
function of the Peclet number for Re = 0.2 and Pr = 10, respectively. / = 0.00307, kr = 5.0, cpr = 1.0, qr = 1.001, Fr = 0 and Gr = 0.
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Fig. 15. Isotherms at steady-state for a circular particle freely suspended in a Couette flow at different Peclet and Reynolds numbers. The
temperature increment for all contours is 0.163. / = 0.00307, kr = 5.0, cpr = 1.0, qr = 1.001, Fr = 0 and Gr = 0.
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the top plate as the effective heat conductivity of the suspension from (83) and then surprised at the observa-
tion that the ‘‘effective’’ conductivity is smaller than the diffusion-related one for kr = 5 and Pe = 2, which
contradicts the simple argument mentioned earlier that the micro-convection-induced one is always positive
for a diffusion system. We later realized that (83) is not valid in the present cases where they are many particles
in near touch with the top plate (see Fig. 17) since in the derivation of (83) only the fluid conductivity is used to
compute the heat flux on the plate. The overall decline in the average wall temperature gradient with time for
kr = 5 and Pe = 2 thus can be explained by the fact that there are more particles being occasionally pushed to
the plate and then sticking there due to the lubrication force as time goes. For the case of kr = 1, the average



Fig. 17. Typical isotherms and particle configuration for a sheared non-colloidal suspension of 800 circular particles in a 64d · 32d Couete
cell. / = 0.307, Re = 0.2, Pe = 20, kr = 5, cpr = 1.0, qr = 1.001, Fr = 0 and Gr = 0. t = 30.
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temperature gradient equals kc/kf and becomes positive, as expected. For kr = 5 and Pe = 20, it is also larger
than kd/kf because the effect of thermal convection on kc is so strong that it overshadows the negative effect
due to the sticking particles. The typical isotherms for this case are displayed in Fig. 17, and one can see the
substantially inhomogeneous temperature fields as a result of strong thermal convection at relatively large kr.

For kr = 5, Re = 0.2 and Pe = 2, we have observed that in the dilute limit the diffusion-related conductivity
kd decreases slightly compared to the one in the absence of flows, whereas the opposite is observed for /
= 0.307 in Fig. 16, which is expected to be caused by the clusters of particles forming in the shear flow
(Fig. 17) compared to the random distribution of particles when there are no flows. In addition, it is not sur-
prising to find in Fig. 16 that the negative effect of Pe on kd prevails at Pe = 20.

Heat conductivity of nanofluids: Nanofluids are essentially colloidal suspensions characterized by the strong
Brownian motion of the suspended particles. The root-mean-square velocity of the Brownian particles uB can
be estimated from the energy equipartition law: Mu2

B ¼ ndkBT , here nd, kB, T being the dimensionality of the
motion, the Boltzmann constant and the absolute temperature of the suspension, respectively. Obviously, the
Brownian velocity is increased dramatically as the particle size decreases, and Prasher et al. [33] has showed
that the uB-based particle Reynolds number is inversely proportional to the root of particle diameter

ffiffiffi
d
p

and
can reach up to order O(0.01–0.1) for particles of a few nanometers suspended in water. Liquids normally have
a large Prandtl number, thus the heat convection in the nanofluids could be pronounced and result in a sig-
nificant contribution to the effective heat conductivity.

The Brownian effect can be numerically implemented by either introducing a random force into the equa-
tion of particle motion [60] or a random stress into the fluid momentum equations [61,62]. However, it is a
non-trivial task to incorporate the Brownian effect in case of many particles into our direct simulation method
with the either method in such a way that the fluctuation–dissipation theorem is exactly satisfied. Here, we use
a very simple method that is by no means accurate but just for our attempt to confirm that the convection-
related kc can substantially contribute to the effective heat conductivity ke at a relatively low Reynolds number
of O(0.1) and a low particle volume fraction of O(0.01). In this method, the Brownian motion of each particle
is considered separately by adding to the equation of particle motion (52) a random force FB that is indepen-
dent of the particle configuration and has a dimensional form as follows:
FB ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT n

Dt

r
W; ð86Þ
where n is the hydrodynamic friction coefficient and is obtained with a mean-field-like approximation to the
resistance matrix, i.e., n = ÆRæ, and W is the standard Gaussian deviate. In two dimensions, the forces in (52)
(now including the Brownian force) are scaled as qfU

2
cLc, and we let n = Kg, K being a constant. With our

definition of the characteristic velocity
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MU 2
c ¼ kBT ; ð87Þ
one gets the dimensionless Brownian force
FB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2qrS

�
pK

ReDt

s
W. ð88Þ
In the derivation, we assume that the suspension has a homogeneous temperature T, as an approximation to
the plate system where there is the temperature variance. The dimensionless temperature at the particle posi-
tion would enter (88) if the temperature variance is accounted for. Note that Dt in (88) is the dimensionless
time step scaled as Lc/Uc whereas Dt in (86) is dimensional. Again, we take the particle diameter as the char-
acteristic length for the current Brownian simulations.

There are various methods to estimate the value of K, such as from Kg = ÆFæ/ÆUæ for a given force F or a
given particle velocity U on each particle, and from the short-time diffusivity coefficient calculated with a
method in [5]. We consider a 2D plate unit cell with both height and width being 32 particle diameters and
there are 40 particles in the unit cell, corresponding to the area fraction of 0.0307. We found that the different
methods give different K ranging from 6 to 15 for the random suspension at low Reynolds numbers. In our
Brownian simulations, the gravitational effect and the natural convection are not considered, i.e., Fr = 0
and Gr = 0. With the density ratio qr being fixed to be 1.01, the motion of the particles is governed by the
Reynolds number and K. We set K = 6. From the energy equipartition law and the definition of the charac-
teristic velocity (87), the computed dimensionless root-mean-square of the particle velocities u�B is expected to
equal

ffiffiffi
2
p

, however, its value calculated from our simulations is around 2.0 for both Re = 0.1 and Re = 0.2.
The discrepancy is not surprising since the fluctuation–dissipation theorem is not exactly fulfilled in our simple
method with K = 6. A more accurate algorithm for the Brownian motion based on the DLM/FD frame par-
ticularly for the 3D case is a subject of our future work; here we only conduct a qualitative study.

We let kr = 2.0 and cpr = 1.0. Fig. 18 shows the time evolutions of the calculated relative effective heat con-
ductivities ke/kf and the relative diffusion-related conductivities kd/kf at Re = 0.1 and 0.2, and Pe = 1 and 2.
We see that the effective conductivities are considerably larger than the diffusion-related ones, conforming that
the convection-related conductivities kc arising from the Brownian motion of the particles are large. The dif-
fusion-related conductivities kd are not sensitive to Re and Pe in the cases studied, and the values of kd/kf are
around 1.021 (Fig. 18), being the same as the one in the absence of flows. In contrast, the convection-related
conductivity kc increases with increasing Re or Pe, as demonstrated in Fig. 18. Since both Re and Pe are low,
the reason for the increase in kc with Pe is mainly related to the coefficient Pe in the definition of kc (85) and
the one for Re is related to the integral in (85) that has been shown related to the Brownian diffusion of the
particles earlier.
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. Evolutions of the relative effective heat conductivities of nanofluids suspended with circular particles at different Reynolds and
numbers in a 2D plate system with both height and width being 32 particle diameters. The results on the molecular-heat-diffusion-
conductivities kd are also shown. The effects of gravity and natural convection are not considered. / = 0.0307, kr = 2.0, cpr = 1.0,

01 and K = 6. Dt = 0.0005.
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Fig. 19. (a) Flow fields and (b) isotherms for nanofluids suspended with circular particles in a 2D plate system with both height and width
The typical structures of the flow and temperature fields are plotted in Fig. 19. The velocity of each particle
fluctuates with time rapidly, and the velocities of the fluids in the vicinity of most particles appear to differ
much in magnitude from the particle velocities (Fig. 19a), unlike the case of the steady motion of particles.
However, the Brownian motion of the particles does carry a large amount of fluids to move with them in
the general case (Fig. 19a) and consequently gives rise to a strong temperature convection (or fluctuation)
of a length scale that is much larger than the particle size (Fig. 19b).

Our preliminary numerical results above support the argument that the micro-heat-convection in the fluids
is responsible for the unusually high heat conductivity of nanofluids. However, a more accurate and 3D algo-
rithm for the Brownian motion of nanoparticles is required to unambiguously elucidate the origin of the high
heat conductivity. In addition, the validity of the continuum equations for nanofluids might need to be
examined.

5. Conclusions

We have presented the DLM/FD methods for the heat transfer problems for both cases of fixed and
freely varying temperatures on the immersed boundaries. The fluid-flow equations are solved with the finite-
difference projection method on a half-staggered grid, as in our previous codes. In our operator splitting
scheme, the Lagrange multipliers at the previous time level are kept in the fluid equations, and the new
Lagrange multipliers for the rigid-body motion constraint and the Dirichlet temperature boundary condition
are determined from the reduced saddle-point problem, whereas a very simple scheme based on the fully expli-
cit computation of the Lagrange multiplier is proposed for the case of freely varying temperature on the par-
ticle boundary and is shown as accurate as the fully coupled scheme but limited to small (qrcpr � 1). Our
updated collision model based on the incorporation of the lubrication force is also briefly described.

Our code for the case of fixed temperature on the immersed boundary is verified by comparing favorably
our results on the natural convection driven by a hot cylinder eccentrically placed in a square box and on the
sedimentation of a cold circular particle in a vertical channel to the data in the literature. Our code for the case
of freely varying temperature on the boundaries of freely moving particles is applied to analyze the motion of a
catalyst particle in a box and in particular the heat conductivities of nanofluids and sheared non-colloidal
suspensions, respectively. Our preliminary results support the argument that the micro-heat-convection in
the fluids is responsible for the unusually high heat conductivity of nanofluids. It is observed that the Peclet
number plays a negative role in the diffusion-related heat conductivity of a sheared non-colloidal suspension,
whereas the Reynolds number does the opposite.
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Although the method is implemented in two dimensions, the extension to the three-dimensional case is
straightforward.
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